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Introduction 

Single cell analysis of heterogeneous populations requires the simultaneous quantitative determination 

of multiple biomarkers for functional and phenotypical identification. However, detailed 

characterization of single cells has been limited by available probes and instrumentation, where the 

number of parameters in conventional flow cytometers has been restricted by spectral overlap between 

fluorescent probes. Current fluorescence-based flow cytometry technologies typically provide 

measurements of up to 10-12 parameters, which have been expanded to 17 parameters using improved 

fluorescent probes or quantum dots with narrower emission bandwidths (Chattopadhyay et al. 2006). 

On the other hand, limitations in cytometry instrumentation have been overcome with the development 

of the next-generation mass cytometry platform (CyTOF) (Bandura et al. 2009). The mass cytometer is 

based on inductively coupled plasma time-of-flight mass spectrometry and currently allows single cell 

measurement of more than 30 parameters (Bandura etal. 2009, Bendall et al. 2011, Gibbs et al. 2012, 

Newell et al. 2012).  

 

As a corollary, analysis of multidimensional cytometric data has become progressively more complex 

with more measured parameters. Despite the high throughput nature of the single cell measurements, 

the current methods for data analysis remain surprisingly low throughput, requiring manual selection of 

cell subsets in a labor-intensive and subjective manner (Herzenberg et al. 2006, Qiu et al. 2011). The 

flow cytometry data are stored in flow cytometry standard (FCS) files and extracted using software such 

as FlowJo and FlowCore (Ellis et al. 2009). These software allow each data file to be viewed as biaxial 

plots of two parameters, where cells expressing phenotypic markers of interest are selected for by 

manually drawing a ‘gate’ demarcating the boundaries of the cell subset (Herzenberg et al. 2006). 

Further phenotypic characterization is performed by sequentially ‘gating’ on biaxial plots featuring other 

parameters in the downstream analysis. The shape, location, and sequence of the gates depend on the 

investigator’s knowledge of the biological system and interpretation of the experiment, which is 

subjective and likely to vary with different investigators (Herzenberg et al. 2006). Depending on the 

manually drawn gates, cell subsets may also be inadvertently excluded, and relationships between 

unpaired parameters may remain undiscovered (Boedigheimer et al. 2008). 

 

To reduce the inherent user variability and allow a more comprehensive overview of the cell 

phenotypes, automatic gating algorithms have been independently developed by several groups 

(Boedigheimer et al. 2008, Chan et al. 2008, Lo et al. 2008, Murphy 1985, Pyne et al. 2009) to provide 

computer-assisted objective data analysis that are not predicated on user-defined gates. Some of the 

earliest approaches of automatic gating algorithms utilize k-means clustering (Murphy 1985) and 

Gaussian mixture modeling (Demers et al. 1992) to identify cell subsets. Mixture modeling assumes that 

each sample consists of a mixture of components modeled as multivariate distributions, allowing cell 

subsets to be described using continuous changes in expression in all dimensions, instead of discrete 

changes in expression (e.g. binary high/low expression) in selected dimensions as determined by manual 

gating with rigid boundaries. Statistical mixture modeling for flow cytometry is an active area of 

research, with the development of multiple algorithms. Although Guassian mixture modeling has been 

refined for flow cytometric analysis (Boedigheimer et al. 2008, Chan et al. 2008), errors in clustering may 

still arise from outliers and skew in the data. Alternative algorithms have been developed to transform 

the outliers and data skews, thus reducing clustering errors (Lo et al. 2008, Pyne et al. 2009).  
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However, one common limitation across these algorithms is the inability to detect rare cell types, which 

are often excluded as outliers or absorbed into larger clusters. Recent algorithms have started to include 

mechanisms for identification of rare events, such as SamSPECTRAL (Zare et al. 2010), which uses a data 

reduction scheme to down-sample abundant cell populations using potential theory, allowing detection 

of populations comprising between 0.2% to 2%  of the total data. A second limitation is the inability of 

these algorithms to detect intermediate phenotypes that are typical of the continuous progression of 

cellular differentiation in heterogeneous samples (van Lochem et al. 2004). A third limitation is the 

scalability issue of visualizing increasing numbers of parameters per cell. Biaxial plots display the 

correlation of two parameters only, such that visualization of m parameters would require a total of 

m(m-1)/2 biaxial plots. Identifying correlations and relationships in high-dimensional data from a series 

of biaxial plots becomes a tedious and labor-intensive process. One approach to this issue is the 

probability state model, implemented in the Gemstone software package (Bagwell 2010), where cells 

are rearranged linearly according to a predetermined expression pattern of the parameters. However, 

this semi-supervised approach requires knowledge of the progression of marker expression underlying 

the cell populations, and does not allow for branching during the rearrangement (Qiu et al. 2011). 

 

To address the aforementioned limitations, spanning-tree progression analysis of density-normalized 

events (SPADE) was developed to complement the technique of mass cytometry (Qiu et al. 2011). SPADE 

is an unsupervised algorithm that analyzes high-dimensional mass cytometry data and objectively 

organizes cells into a hierarchy of related phenotypes without any prior knowledge. The SPADE 

algorithm is able to identify rare populations, such as hematopoietic stem cells (Bendall et al. 2011, Qiu 

et al. 2011), and enable visualization of multiple cell types in a single branched “minimum-spanning 

tree” structure. The clustering and feature extraction methods of mass cytometry will be reviewed in 

this article. 

 

CyTOF Technology 

The instrumentation for mass cytometry was developed by Bandura et al., and is based on inductively 

coupled plasma time-of-flight mass spectrometry.  

 

 
Figure 1: Workflow summary of mass cytometry analysis. (Bendall et al. 2011) 

The sample is prepared by staining cells with epitope-specific antibodies conjugated to transition 

element isotopes of unique mass (instead of fluorescent labels). The rare earth elemental tags (such as 

lanthanides) are attached to antibodies through metal-chelator coupling reagents. The sample is then 
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introduced into the mass cytometer, where the individual cells undergo the processes of vaporization, 

atomization, and ionization by inductively coupled plasma (ICP). The elemental isotopes are detected by 

a time-of-flight mass spectrometer (TOF-MS). In other words, the cells are nebulized into single-cell 

droplets of elemental tags which are read to generate an elemental mass spectrum. Hence, mass 

cytometry uses mass, rather than conventional fluorescence, as the readout. The integrated elemental 

reporter signals for the cells can then be analyzed using various approaches, such as traditional biaxial 

plots, heat maps of changes in expression, and tree plots (Bandura et al. 2009, Bendall et al. 2011). 

 

Mass cytometry utilizes the high resolution, sensitivity, and speed of analysis of ICP-TOF-MS to achieve 

simultaneous measurements of multiple protein markers (Bandura et al. 2009). Mass cytometry 

overcomes the key limitation of multi-parameter single-cell measurement by eliminating the 

dimensional restriction caused by spectral overlap of fluorescent labels, hence theoretically allowing 

simultaneous measurements of up to 50 parameters or more. Another advantage of mass cytometry is 

the precision of each measurement generated from mass spectrometry, where detection of each 

elemental tag is a discrete event with no overlaps between the detection channels, thus eliminating the 

additional step of signal compensation (which is otherwise required for traditional fluorescence-based 

flow cytometry). Rare earth elemental isotopes are also not naturally found in biological systems, thus 

removing the need for background correction.  

 

However, the main disadvantage is that the mass cytometer is incapable of cell sorting, as cells are 

completely nebulized during the measurement (Bandura et al. 2009, Bendall et al. 2011). Mass 

cytometry also has a lower sampling efficiency of less than 30% (compared to 95% for fluorescence-

based flow cytometry), lower sampling rate of 2 million cells per hour (compared to 25-60 million per 

hour for flow cytometry) (Bendall et al. 2012). Another challenge is the optimization process of 

procuring and testing a panel of antibodies, especially as monoclonal antibodies have different affinities, 

stabilities, and resistance to conjugation chemistries (Bandura et al. 2009). 

 

Methods - SPADE 

In SPADE, fundamentally, the data is 

analyzed as a high-dimensional point cloud 

of cells, and underlying patterns and 

geometry of the data are inferred using 

topological methods (Qiu et al. 2011). SPADE 

comprises four computational modules; 

density-dependent down-sampling, 

agglomerative clustering, construction of a 

minimum spanning tree, and up-sampling 

(Figure 2). 

 

1. Density-dependent down-sampling 

The cytometry data set is analyzed as a high-

dimensional point cloud, where each cell is 

represented as a point in the cloud, each 

marker is represented by a dimension of the 

cloud (Qiu et al. 2011). Cloud density would 

then directly reflect the abundance of a 

specific cell type, such that rare cell types 

would be found in regions of low densities, 

Figure 2: Flowchart of SPADE analysis of a simulated two-

parameter data set, with one rare population and three 

abundant populations (Qiu et al. 2011). 
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while abundant cell types would be found in regions of high densities. The density variation is removed 

by density-dependent down-sampling to equalize the density of the cloud regions, and to represent rare 

and abundant cell types equally in subsequent analyses (Qiu et al. 2011). 

 

Density-dependent down-sampling for each cell was performed according to the computed local 

density, target density, and outlier density. The local density for each cell was defined as the number of 

cells within a neighborhood as defined by a distance threshold, which was in turn defined as a multiple 

of the median minimum distance between a cell and its nearest neighbor. A L1 (Manhattan) distance 

metric was used where the distance between two cells is the sum of the absolute differences of their 

parameter values. This allowed most cells to have at least one neighbor within the distance threshold. 

On the other hand, the outlier density and target density are user-specified inputs for SPADE, usually 

determined empirically. 

 

Outlier density is used to exclude the most phenotypically isolated cells with the lowest local densities.  

The current default for SPADE analyses is to set the outlier density as the 1st percentile of local densities 

of all cells, such that the bottom 1% of the cells with the lowest local densities are regarded as noise and 

discarded. This does not result in the exclusion of rare cell types, such as hematopoietic stem cells that 

make up 0.2% of the bone marrow population, as phenotypically similar stem cells may form clusters of 

high local densities in the point cloud.  

 

Target density determines the degree of down-sampling performed on the original data set. Ideally, the 

target density selected should be comparable to the local density of the rare population of interest. 

However, it is difficult to optimize the value of the target density without knowledge of the positions of 

the rare cell types in the point cloud. The current default for SPADE analyses is to set the target density 

as the percentile that would produce 20,000 cells after down-sampling (Qiu et al. 2011). The default 

target of 20,000 down-sampled cells is to make the subsequent clustering step more computationally 

tractable. 

 

Down-sampling was performed by computing the probability of retaining a cell i as determined by the 

local density (LDi), target density (TD), and outlier density (OD) (Qiu et al. 2011): 
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Cells with local densities lower than the outlier densities are excluded, while cells with local densities 

between the outlier and target densities are retained. Cells with local densities higher than the target 

densities (i.e. in high-density regions) are down-sampled such that their local densities are reduced to 

the target density. Hence the extent of down-sampling is dependent on the density of the cells. 

 

A major advantage of down-sampling is the equal representation of rare and abundant cell types. As 

most of the points belonging to rare cell types are retained, the rare cells are able to form their own 

clusters without being outnumbered by the abundant cell types in the subsequent analysis. The overall 

shape of the point cloud is preserved in the process. The size of the dataset is also significantly reduced, 

making subsequent analyses more computationally tractable. However, one disadvantage is the 

potential overrepresentation of noise events, as nonspecific noise events with local densities higher 

than the outlier density are retained. The signal-to-noise ratio in the down-sampled dataset may be 
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reduced compared to the raw dataset, which may affect the clustering methods used to the construct 

the cellular hierarchy. Thus the selection of appropriate values for the target density and outlier density 

is critical to ensure maximal representation of rare cell types with minimal inclusion of noise events. 

 

2. Agglomerative clustering 

Agglomerative hierarchical clustering is performed to segment the down-sampled point cloud of cells 

into cluster of cells with similar intensities of the markers (i.e. similar phenotypes). The clustering 

algorithm is initialized by setting each individual cell as a cell cluster. In each iteration of the algorithm, 

one cell cluster (equivalent to a single cell for the first iteration) is randomly selected and grouped with 

its nearest neighbor, as defined by the single linkage L1 distance. Another cell cluster is then randomly 

chosen from the remaining clusters and grouped with its nearest neighbor, if the nearest neighbor has 

not been paired with another cluster in the current iteration. Each iteration of the algorithm will result 

in the pairing of all the cell clusters, reducing the total number of clusters by approximately half. The 

clustering algorithm performs multiple iterations until the number of cell clusters reaches a user-

specified threshold.  

 

This ‘bottom up’ approach merges cell clusters in a greedy manner that ensures the local optimal 

solution. One advantage of agglomerative clustering is its speed, which is a nontrivial matter when 

dealing with datasets containing large numbers of cells. The resolution of the clusters and resulting 

SPADE tree can also be modified by changing the user-specified final desired number of cell clusters (i.e. 

nodes in the constructed MST) (Qiu et al. 2011). Over-clustering results in too few nodes in the MST, 

leading to an inaccurate representation of the point cloud. Under-clustering results in too many nodes in 

the MST, leading to a complex SPADE tree that is not easily interpretable. The choice of the number of 

clusters depends on the number of markers used for the cytometry experiment and the complexity of 

the shape of the point cloud. Current implementations of SPADE analyses set the number of clusters to 

be 50, 100, or 300 (Qiu et al. 2011). 

 

3. Construction of a minimum spanning tree 

A minimum spanning tree (MST) was constructed using Boruvka’s algorithm (Pettie et al. 1999) to link 

the cell clusters, summarizing and extracting the topology of the point cloud. Each cell cluster is 

represented as a tree node with its median parameter values. The graph is initialized with all the tree 

nodes and no edges. In each iteration of the algorithm, one connected subgraph (equivalent to a single 

tree node in the first iteration) is randomly selected and all single linkage L1 distances to all nodes 

outside the randomly selected subgraph are calculated. An edge corresponding to the smallest linkage 

distance is added to the graph. This process undergoes multiple iterations until all the nodes are 

connected in a spanning tree with minimum total edge length (Qiu et al. 2011). The resulting MST will 

resemble the shape of the point cloud, and can be thought of as the topological skeleton of point cloud. 

Since each edge has a distinct weight, it is likely that only one unique solution for the MST will exist for 

each data set. 

 

4. Up-sampling 

Up-sampling is performed to map all the cells onto the constructed MST structure, allowing the 

properties of each cell cluster (such as median intensity) to be calculated with higher accuracy. For each 

cell in the original dataset, the distances to all the cells in the down-sampled dataset are computed to 

find its nearest neighbor. The cell is then assigned to the cell cluster to which its nearest neighbor 

belongs. 
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Force-directed layout of the SPADE tree 

The MST tree recapitulates the topology of the point cloud in the form of an unrooted tree formed by 

hierarchical clustering. A MST tree with a fixed topology can be represented in multiple ways, by 

rotating the layout, or changing the length of the edges or the angles between the branches (Figure 5a-

b). To standardize the layout of the SPADE tree, a modification of the Fruchterman-Reingold algorithm 

(Fruchterman et al. 1991) for graph drawing was used to automatically determine a layout of the SPADE 

tree.  

 

For the layout algorithm, the longest path in the MST tree is identified and represented as an arch-like 

curve. The nodes found on the longest path are fixed onto this main arch, and the remaining tree nodes 

are appended to this main arch. The position of a new node is determined by two factors: a repelling 

force between the new node and each fixed node in the layout, and an attracting force between the 

new edge between the new node and the fixed nodes (Qiu et al. 2011). This algorithm ensures that the 

nodes are arranged in a manner that would produce in a layout with minimum energy. The force-

directed placement of the nodes produces the characteristic structure of the SPADE tree, where smaller 

branches radiate outwards from a main arch (Figure 3b, Figure 4).  

 

Manual annotation and interpretation of the SPADE tree 

The tree nodes are colored according 

to the median intensities of their 

parameters, generating colored 

SPADE trees representative of the 

segmented point cloud (Figures 3c-e). 

The user then has to analyze the 

colored nodes and annotate the 

SPADE tree manually. 

 

Boundaries are manually drawn to 

separate regions that show different 

colors (Figures 3c-e). Although gating 

and prior knowledge are not 

necessary for drawing the boundaries, 

prior knowledge is necessary to 

interpret the biological relevance of 

each tree region. For example, the user 

has to be aware that myeloid cells are 

CD11b+ (Figure 3d), B-cells are B220+, 

T-cells are TCR-β+ and can be CD4+ and/or CD8+ (Figure 3e) (Bryder et al. 2006).  

 

Cell clusters in the bounded regions are annotated according to their biological relevance, producing an 

annotated tree representation (Figure 3b, Figure 5). Although manual user-defined annotations 

inherently involve a degree of subjectivity, they are still less subjective than conventional gating 

methods. This is because the interpretations and annotations are guided by the topology of the SPADE 

tree, which is constructed objectively to reflect the phenotypes of the underlying cell subsets in the data 

(Qiu et al. 2011). Also, SPADE annotations are performed on the entire dataset simultaneously, while 

conventional gating methods performs annotations on biaxial plots sequentially. Hence the annotated 

SPADE tree allows visualization of multiple parameters of the entire dataset in a single diagram. 

 

Figure 3: a) Known hematopoietic hierachy in mouse bone marrow. 

b) SPADE tree derived from mouse bone marrow data manually 

annotated by the user. (c-e) SPADE trees colored by the median 

intensity of one individual marker. (Qiu et al. 2011) 
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Potential use of a cell ontology for automatic annotation and interpretation of the SPADE tree 

The annotation process can be improved with the construction of an ontology of immune cells. Immune 

cell subsets are defined by the combinatorial expression (or absence) or specific cell markers (Bryder et 

al. 2006, Chao et al. 2008). These include clusters of differentiation (CD) which are used to label cell 

surface molecules that are used for immunophenotyping of cells. A cell ontology containing 

relationships between each cell type and protein biomarkers would provide a context or reference 

hierarchy by which the annotations may be performed. The cell ontology could also be used to direct 

the construction of the MST in the SPADE algorithm, by modulating the weights of the edges connecting 

the tree nodes with information from the cell ontology.  

 

However, although there are efforts in developing cell type ontologies 

(http://bioportal.bioontology.org/ontologies/1006), current ontologies do not contain the relevant 

information (e.g. phenotypic expression of cellular markers) for annotating cytometry data. Also, there 

is no gold standard for selection of markers used to define cell subsets. In fact, selection of markers for 

immunophenotyping often depends on the conventional markers used in previous published studies or 

the investigator’s preferences (Maecker et al. 2012). 

 

The Human Immunology 

Project is one example of 

ongoing efforts towards 

standardizing 

immunophenotyping in the 

human immune system 

(Maecker et al. 2012). The 

Human Immunology Project 

proposes the use of precise 

and standardized assays to 

distinguish true biological 

changes form technical 

artefacts.  

 

Eight-color antibody panels for fluorescence-based flow cytometry have been proposed for the 

immunophenotyping of specific immune cell subsets (Figure 4). It is conceivable that the protein 

markers selected for the panels could serve as the beginnings of an immune cell ontology, where 

description logic can be used to describe the specific attributes for a cell subset. Possible attributes 

include the expression or lack of protein markers, their parent cell subsets, and their differentiated 

progeny cell subsets. The immune cell ontology can be created using ontology editors such as Protégé-

OWL (http://protege.stanford.edu). The use of description logic and OWL also allows the automatic 

generation of an inferred hierarchy of the cell subsets using reasoners built into Protégé. The 

establishment of this immune cell ontology would be indispensable for automating the annotating of 

the SPADE tree, and refine the algorithm used in constructing the MST tree. 

 

Marker selection for SPADE analysis 

The user-determined input parameters for SPADE include the markers selected to build the SPADE tree, 

the outlier density and target density for the down-sampling algorithm, and the desired number of 

clusters for the agglomerative clustering algorithm.  

 

Figure 4: Eight-color antibody panels proposed by the Human 

Immunophenotyping Constortium (Maecker et al. 2012). 
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Selection of the appropriate markers to be used in the mass cytometry experiment is critical for the 

accurate elucidation of the underlying cellular hierarchy. This is because the shape of the cell cloud 

changes when different sets of markers are used, resulting in different SPADE trees being generated. 

Due to correlation amongst protein markers, it has been shown that SPADE analysis is robust to the 

exclusion of a few meaningful markers or inclusion of a few irrelevant markers, given that the majority 

of the selected markers are meaningful (i.e. they are largely sufficient for differentiating between cell 

types) (Qiu et al. 2011). Selection of markers has been performed using the investigator’s prior 

knowledge of the biological system (Bendall et al. 2011, Gibbs et al. 2012, Newell et al. 2012). However, 

this could be performed using standardized markers from the Human Immunophenotyping Project 

(Maecker et al. 2012), or potentially, by using an immune cell ontology.  

 

Comparing multiple datasets with SPADE 

SPADE can be used to compare multiple cytometry datasets with overlapping staining panels of 

antibodies. Down-sampled data from each individual dataset is pooled to form a meta-down-sampled 

dataset depicting all the cells in the point cloud space according to the markers in common across all the 

datasets; e.g. 13 core surface markers for human bone marrow (Bendall et al. 2011, Qiu et al. 2011). The 

resulting SPADE tree reflects the phenotypic topology of the meta-dataset, and can be annotated 

manually (Figure 5a-b).  

 

 

The behavior of a marker in response to a perturbation can be visualized by displaying the ratio or 

difference of intensities between the stimulated and unstimulated (basal) conditions for each node, 

overlaid onto the annotated SPADE tree. This allows direct observation of all cell subsets in the 

hematopoietic compartment that were affected by the perturbation (Bendall et al. 2011). 

 

Methods – Principal Component Analysis  

While SPADE analysis is effective in showing relationships between different cell types and discovering 

potential new cell types, one limitation of using SPADE clustering analysis is that the algorithm 

emphasizes the similarities between cells and the assignment of distinct cell types by the algorithm is 

arbitrarily determined by the down-sampling and up-sampling processes. 

 

Figure 5: Annotated SPADE trees showing immunophenotypic progression in human bone marrow using

13 cell-surface markers. A) Layout automatically generated by the Fruchterman-Reingold algorithm (Qiu et 

al. 2011). B) Layout manually reorganized to resemble the classic immunology diagram of hematopoietic 

developmental hierachy (Bendall et al. 2011). 

A 
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Another statistical method used to visualize multidimensional single cell data is principal component 

analysis (PCA) (Pearson 1901). PCA uses an orthogonal transformation to collapse the dataset containing 

correlated parameters to a smaller set of linearly uncorrelated variables known as principal components 

(PC), such that each principal component is a weighted combination of all the markers. The principal 

components are arranged in descending order of the variance, i.e. PC1 has the largest possible variance 

(Haining 2012).  

 

In a study by Newell et al., mass cytometry 

was used to determine patterns of cytokine 

expression and virus-specific cell niches 

within a continuum of CD8+ T-cell 

phenotypes (Newell et al. 2012). PCA was 

used to visualize the information from 25 

functional and phenotypic markers on PMA-

ionomycin stimulated CD8+ T-cells, where 

each principal component was described as 

a weighted combination of the 25 markers. 

 

The first three principal components (PC1, 

PC2, PC3) of the CD8+ T-cell compartment 

were selected and visualized in three 

dimensions, using the protein structure 

program PyMol (DeLano, 2002). Naïve, 

central memory (Tcm), effector memory 

(Tem), and short-lived effector (Tsle) CD8+ 

T-cells were manually gated in biaxial plots 

based on stringent surface expression 

criteria and differentially colored on the PCA 

plot (Newell et al. 2012) (Figure 6a). A folded Y-shape pattern was observed with naïve T-cells at the 

base of the Y and Tsle and Tcm cells forming distinct nodes at the tips of the Y. The arrangement of the 

subsets suggests a continuum of phenotypes connecting the naïve and memory subsets, and a 

continuum of memory cells connecting Tcm cells to Tem cells, which were then connected to Tsle cells 

(Newell et al. 2012). The graded variations in the functional and phenotypic markers associated with 

memory cell progression along PC2 also reflected known patterns of protein expression during memory 

cell differentiation (Figure 6b-c). 

 

The advantage of using 3D-PCA is that no distinct cell clusters were arbitrarily created (unlike SPADE); 

instead, all the cells were individually represented on the 3D plot such that the underlying graded 

progression between the clusters were easily visualized. This approach allows the identification of major 

cell subsets defined by selected markers without any biases. The overall phenotypic and functional 

characteristics of each perceived cell cluster and their interrelatedness can also be perceived intuitively 

by viewing the 3D-PCA plot. The main disadvantage of PCA is the loss of the ability to determine the 

expression of individual markers by each cell. 

 

Conclusion 

The development of mass cytometry has allowed the simultaneous measurement of more than 50 

parameters on single cells (Bandura et al. 2009). This marked increase in the dimensionality of single-cell 

data has resulted in a need for novel methods of analyzing cytometry data. Although automatic gating 

Figure 6: 3D-PCA representation of CD8 T-cell 25 parameter 

data and memory cell phenotypic and functional progression 

(Newell et al. 2012). 
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methods for identifying cell subsets have been previously proposed by multiple groups (Boedigheimer et 

al. 2008, Chan et al. 2008, Lo et al. 2008, Murphy 1985, Pyne et al. 2009), visualization of flow cytometry 

data has remained, in essence, as multiple series of biaxial plots. 

 

One elegant method used for analyzing and visualizing these large datasets is SPADE (Qiu et al. 2011), 

which reduces a high-dimensional data set to an intuitive tree diagram that reflects the relationships 

between cell types. SPADE has been shown to be able to recapitulate known patterns of hematopoietic 

differentiation with much finer granularity (Bendall et al. 2011), demonstrating its validity as a clustering 

algorithm for multi-dimensional data. Mass cytometry and SPADE have also been used in other contexts 

besides phenotyping cells of the immune compartment, such as the potential identification of tumor-

initiating cells in acute myeloid leukemia (Gibbs et al. 2012).  

 

However, the use of SPADE analysis requires finding the optimal set of input parameters such as the 

markers for analysis, target and outlier density, and the desired number of cell clusters in the SPADE 

tree. The construction of the SPADE tree could be facilitated with the development of an immune cell 

ontology, which will refine the connecting edges between nodes and allow guided annotations of the 

resulting cell clusters in SPADE. Alternative methods include using PCA to identify major cell clusters 

without any manipulation of the position of each individual cell. However, PCA removes the ability of 

the user to determine expression of individual markers on each cell. 

 

The increase in the number of measurement parameters result in increasing numbers of different 

possible combinations of cell phenotypes. Given the graded progression of cell subsets shown by PCA 

(Newell et al. 2012), it is likely that more heterogeneity will be discovered in the immune cell 

compartment. However the biological significance of these cellular heterogeneities identified by mass 

cytometry remains to be discovered. For example, finer cell clusters in a single cell type are often 

obtained in SPADE, and it remains unknown if these finer cell clusters are an artifact of the clustering 

algorithm, or if they are functionally different subsets that are reproducible. The challenge for 

experimental investigators will be to determine if the nodes identified by the clustering and feature 

extraction methods of cytometry are biologically unique. 
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